کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610070 1338543 2015 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability of rarefaction waves of the Navier–Stokes–Poisson system
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Stability of rarefaction waves of the Navier–Stokes–Poisson system
چکیده انگلیسی

In the paper we are concerned with the large time behavior of solutions to the one-dimensional Navier–Stokes–Poisson system in the case when the potential function of the self-consistent electric field may take distinct constant states at x=±∞x=±∞. Precisely, it is shown that if initial data are close to a constant state with asymptotic values at far fields chosen such that the Riemann problem on the corresponding quasineutral Euler system admits a rarefaction wave whose strength is not necessarily small, then the solution exists for all time and tends to the rarefaction wave as t→+∞t→+∞. The construction of the nontrivial large-time profile of the potential basing on the quasineutral assumption plays a key role in the stability analysis. The proof is based on the energy method by taking into account the effect of the self-consistent electric field on the viscous compressible fluid.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 258, Issue 7, 5 April 2015, Pages 2495–2530
نویسندگان
, ,