کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610116 1338545 2015 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic stability of a composite wave of two viscous shock waves for a one-dimensional system of non-viscous and heat-conductive ideal gas
ترجمه فارسی عنوان
پایداری همبسته یک موج کامپوزیتی دو موج شوک ویسکوز برای یک سیستم یک بعدی از گاز غیر ایده آل و گرما هدایت گر
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

This paper is concerned with the asymptotic stability of a composite wave consisting of two viscous shock waves to the Cauchy problem for a one-dimensional system of heat-conductive ideal gas without viscosity. We extend the results by Huang and Matsumura [2] where they treated the equation of viscous and heat-conductive ideal gas. That is, even for the non-viscous and heat-conductive case, we show that if the strengths of the viscous shock waves are suitably small with same order and also the initial perturbation is suitably small, the unique global solution in time exists and asymptotically tends toward the corresponding composite wave whose spacial shifts of two viscous shock waves are uniquely determined by the initial perturbation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 258, Issue 4, 15 February 2015, Pages 1129–1157
نویسندگان
, ,