کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610160 1338547 2014 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A regularity criterion for the tridimensional Navier–Stokes equations in term of one velocity component
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
A regularity criterion for the tridimensional Navier–Stokes equations in term of one velocity component
چکیده انگلیسی

In this paper, we investigate the regularity criterion of the tridimensional Navier–Stokes equations via one velocity component. Our strategy is to establish the following version of regularity criterions of Leray–Hopf weak solutions in the framework of anisotropic Lebesgue space∫0T‖‖ui(τ)‖Lip‖Lj,kαβdτ<∞,2β+2α+1p⩽34+12α,(p,α)∈Ϝ1, or∫0T‖‖ui(τ)‖Ljp‖Li,kαβdτ<∞,2β+2α+1p⩽34+14α+14p,(p,α)∈Ϝ2,fori≠j. This allows us to obtain regularity criterion of Leray–Hopf weak solutions via only one element Λiγuj with γ∈[0,1]γ∈[0,1] and i,j∈{1,2,3}i,j∈{1,2,3}, that is∫0T‖Λiγuj(τ)‖Lαβdτ<∞,(α,β)∈Ϝ. Here Ϝ1Ϝ1, Ϝ2Ϝ2 and Ϝ   are the sets of indexes (α,β)(α,β) which appear in our results and the fractional operator Λi:=−∂i2. This extends and improves some known regularity criterions of Leray–Hopf weak solutions in term of one velocity component, including the notable works of C. Cao and E.S. Titi [4]. More importantly, by making full use of the Bony paraproduct decomposition, we show that Leray–Hopf weak solutions are smooth on [0,T][0,T] if∫0T‖uj(τ)‖BMO83dτ<∞,j∈{1,2,3}, or∫0T‖Λiγuj(τ)‖B˙∞,2083−2γdτ<∞,γ∈[0,1],fori,j∈{1,2,3}, which fill the gap of endpoint α=∞α=∞.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 256, Issue 1, 1 January 2014, Pages 283–309
نویسندگان
,