کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610274 1338554 2013 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lyapunov function and spectrum comparison for a reaction–diffusion system with mass conservation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Lyapunov function and spectrum comparison for a reaction–diffusion system with mass conservation
چکیده انگلیسی

We are dealing with a two-component system of reaction–diffusion equations with mass conservation in a bounded domain with the Neumann boundary conditions. We prove the global boundedness of the solution in L∞L∞-norm for t⩾0t⩾0 under a condition, and then the existence of a Lyapunov function. Moreover, by studying the linearized eigenvalue problem of a nonconstant equilibrium solution, we provide a comparison theorem for the spectrum between the linearized operators of the system and an appropriate nonlocal scalar equation. As an application of the comparison result we obtain that any stable equilibrium solution must be monotone if the space dimension is one. It is also shown that a modified system with a new parameter, which covers the present model, possesses a Lyapunov function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 255, Issue 7, 1 October 2013, Pages 1657–1683
نویسندگان
, ,