کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4610313 | 1338556 | 2014 | 20 صفحه PDF | دانلود رایگان |

In this paper, following the techniques of Foias and Temam, we establish suitable Gevrey class regularity of solutions to the supercritical quasi-geostrophic equations in the whole space, with initial data in “critical” Sobolev spaces. Moreover, the Gevrey class that we obtain is “near optimal” and as a corollary, we obtain temporal decay rates of higher order Sobolev norms of the solutions. Unlike the Navier–Stokes or the subcritical quasi-geostrophic equations, the low dissipation poses a difficulty in establishing Gevrey regularity. A new commutator estimate in Gevrey classes, involving the dyadic Littlewood–Paley operators, is established that allow us to exploit the cancellation properties of the equation and circumvent this difficulty.
Journal: Journal of Differential Equations - Volume 257, Issue 6, 15 September 2014, Pages 1753–1772