کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610355 1338558 2014 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Slow divergence integral and its application to classical Liénard equations of degree 5
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Slow divergence integral and its application to classical Liénard equations of degree 5
چکیده انگلیسی

The slow divergence integral is a crucial tool to study the cyclicity of a slow–fast cycle for singularly perturbed planar vector fields. In this paper, we deduce a useful form for this integral in order to apply it to various problems. As an example, we use it to prove that the slow divergence integral along any non-degenerate slow–fast cycle for singular perturbations of classical Liénard equations of degree 5 has at most one zero, and the zero is simple if it exists; hence the cyclicity of any non-degenerate slow–fast cycle in this class of equations is at most 2. Up to now there were many interesting results about Liénard equations of degree 3, 4 and ≥6, but almost nothing is known about degree 5. The result in this paper can be seen as a first stage to study the uniform property for classical Liénard equations of degree 5.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 257, Issue 12, 15 December 2014, Pages 4437–4469
نویسندگان
, ,