کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610437 1338563 2014 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heat kernel for the elliptic system of linear elasticity with boundary conditions
ترجمه فارسی عنوان
هسته گرما برای سیستم بیضوی الاستیک خطی با شرایط مرزی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 257, Issue 7, 1 October 2014, Pages 2485–2519
نویسندگان
, , ,