کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610458 1338564 2014 40 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Variational properties and orbital stability of standing waves for NLS equation on a star graph
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Variational properties and orbital stability of standing waves for NLS equation on a star graph
چکیده انگلیسی

We study standing waves for a nonlinear Schrödinger equation on a star graph GG, i.e. N   halflines joined at a vertex. At the vertex an interaction occurs described by a boundary condition of delta type with strength α⩽0α⩽0. The nonlinearity is of focusing power type. The dynamics is given by an equation of the form iddtΨt=HΨt−|Ψt|2μΨt, where H   is the Hamiltonian operator which generates the linear Schrödinger dynamics. We show the existence of several families of standing waves for every sign of the coupling at the vertex for every ω>α2N2. Furthermore, we determine the ground states, as minimizers of the action on the Nehari manifold, and order the various families. Finally, we show that the ground states are orbitally stable for every allowed ω   if the nonlinearity is subcritical or critical, and for ω<ω⁎ω<ω⁎ otherwise.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 257, Issue 10, 15 November 2014, Pages 3738–3777
نویسندگان
, , , ,