کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610518 1338569 2014 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pareto optimal structures producing resonances of minimal decay under L1L1-type constraints
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Pareto optimal structures producing resonances of minimal decay under L1L1-type constraints
چکیده انگلیسی

Resonances optimization is studied under the constraint ‖B‖1≤m‖B‖1≤m on the nonnegative function B∈L1(0,ℓ)B∈L1(0,ℓ) representing the resonator structure. The problem is to design for a given frequency α∈Rα∈R a structure that generates a resonance ω   on the line α+iRα+iR with minimal possible decay rate |Imω|. We generalize the problem replacing B by a nonnegative measure, and show that optimal measures consist of finite number of point masses. This yields non-existence of optimizers for the problem over absolutely continuous measures. We derive restrictions on optimal masses and their positions. This reduces the original infinitely-dimensional problem to optimization over four real parameters. For low frequencies, we explicitly find optimizers. The technique is based on the two-parameter perturbation method and the notion of local boundary point, which is introduced as a generalization of local extrema to vector optimization problems. Special attention is paid to multiple and non-differentiable resonances.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 257, Issue 2, 15 July 2014, Pages 374–414
نویسندگان
,