کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610621 1338575 2012 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gevrey regularity for a class of dissipative equations with applications to decay
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Gevrey regularity for a class of dissipative equations with applications to decay
چکیده انگلیسی

In this paper, following the techniques of Foias and Temam, we establish Gevrey class regularity of solutions to a class of dissipative equations with a general quadratic nonlinearity and a general dissipation including fractional Laplacian. The initial data is taken to be in Besov type spaces defined via “caloric extension”. We apply our result to the Navier–Stokes equations, the surface quasi-geostrophic equations, the Kuramoto–Sivashinsky equation and the barotropic quasi-geostrophic equation. Consideration of initial data in critical regularity spaces allow us to obtain generalizations of existing results on the higher order temporal decay of solutions to the Navier–Stokes equations. In the 3D case, we extend the class of initial data where such decay holds while in 2D we provide a new class for such decay. Similar decay result, and uniform analyticity band on the attractor, is also proven for the sub-critical 2D surface quasi-geostrophic equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 253, Issue 10, 15 November 2012, Pages 2739-2764