کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610720 1338581 2013 54 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces
چکیده انگلیسی

In this paper, we study the global well-posedness of classical solution to 2D Cauchy problem of the compressible Navier–Stokes equations with large initial data and vacuum. It is proved that if the shear viscosity μ is a positive constant and the bulk viscosity λ is the power function of the density, that is, λ(ρ)=ρβ with β>3, then the 2D Cauchy problem of the compressible Navier–Stokes equations on the whole space R2 admits a unique global classical solution (ρ,u) which may contain vacuums in an open set of R2. Note that the initial data can be arbitrarily large to contain vacuum states. Various weighted estimates of the density and velocity are obtained in this paper and these self-contained estimates reflect the fact that the weighted density and weighted velocity propagate along with the flow.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 255, Issue 3, 1 August 2013, Pages 351-404