کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4610772 | 1338584 | 2013 | 31 صفحه PDF | دانلود رایگان |

This paper deals with entire solutions of periodic lattice dynamical systems. Unlike homogeneous problems, the periodic equation studied here lacks symmetry between increasing and decreasing pulsating traveling fronts, which affects the construction of entire solutions. In the bistable case, the existence, uniqueness and Liapunov stability of entire solutions are proved by constructing different sub- and supersolutions. In the monostable case, the existence and asymptotic behavior of spatially periodic solutions connecting two steady states are first established. Some new types of entire solutions are then constructed by combining leftward and rightward pulsating traveling fronts with different speeds and a spatially periodic solution. Various qualitative features of the entire solutions are also investigated.
Journal: Journal of Differential Equations - Volume 255, Issue 10, 15 November 2013, Pages 3505–3535