کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4610787 | 1338585 | 2012 | 25 صفحه PDF | دانلود رایگان |

In this paper, we investigate a contact problem between a viscoelastic body and a rigid foundation, when both the effects of the (irreversible) adhesion and of the friction are taken into account. We describe the adhesion phenomenon in terms of a damage surface parameter according to Frémondʼs theory, and we model unilateral contact by Signorini conditions, and friction by a nonlocal Coulomb law. All the constraints on the internal variables as well as the contact and the friction conditions are rendered by means of subdifferential operators, whence the highly nonlinear character of the resulting PDE system. Our main result states the existence of a global-in-time solution (to a suitable variational formulation) of the related Cauchy problem. It is proved by an approximation procedure combined with time discretization.
Journal: Journal of Differential Equations - Volume 253, Issue 2, 15 July 2012, Pages 438-462