کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4610801 | 1338585 | 2012 | 37 صفحه PDF | دانلود رایگان |

In this paper, we establish a novel approach to proving existence of non-negative weak solutions for degenerate parabolic equations of fourth order, like the Cahn–Hilliard and certain thin film equations. The considered evolution equations are in the form of a gradient flow for a perturbed Dirichlet energy with respect to a Wasserstein-like transport metric, and weak solutions are obtained as curves of maximal slope. Our main assumption is that the mobility of the particles is a concave function of their spatial density. A qualitative difference of our approach to previous ones is that essential properties of the solution – non-negativity, conservation of the total mass and dissipation of the energy – are automatically guaranteed by the construction from minimizing movements in the energy landscape.
Journal: Journal of Differential Equations - Volume 253, Issue 2, 15 July 2012, Pages 814-850