کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610801 1338585 2012 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cahn–Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Cahn–Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics
چکیده انگلیسی

In this paper, we establish a novel approach to proving existence of non-negative weak solutions for degenerate parabolic equations of fourth order, like the Cahn–Hilliard and certain thin film equations. The considered evolution equations are in the form of a gradient flow for a perturbed Dirichlet energy with respect to a Wasserstein-like transport metric, and weak solutions are obtained as curves of maximal slope. Our main assumption is that the mobility of the particles is a concave function of their spatial density. A qualitative difference of our approach to previous ones is that essential properties of the solution – non-negativity, conservation of the total mass and dissipation of the energy – are automatically guaranteed by the construction from minimizing movements in the energy landscape.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 253, Issue 2, 15 July 2012, Pages 814-850