کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610820 1338586 2013 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Patterns in hierarchical networks of neuronal oscillators with D3×Z3 symmetry
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Patterns in hierarchical networks of neuronal oscillators with D3×Z3 symmetry
چکیده انگلیسی

In this paper, we consider a hierarchically organized network composed of three interacting systems each of which consists of three coupled oscillators. This hierarchical network is equivariant under the symmetry group D3×Z3. Using the lattice of isotropy subgroups, we study the reduced equations restricted to invariant fixed-point subspaces and prove that it is possible for the oscillator network to have 4 distinct equilibria or 45 distinct periodic solutions with maximal isotropy subgroups. These are classified and their bifurcation directions are determined in terms of the quadratic coefficients and relevant quantities. A center manifold reduction from the hierarchical network to the normal form equations is then performed in order to investigate the codimension two bifurcations. Using this reduction we find a great variety of equilibria, periodic and quasi-periodic oscillation patterns of maximal and submaximal symmetry which can be classified in a two-level pattern hierarchy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 254, Issue 8, 15 April 2013, Pages 3501-3529