کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4610876 | 1338589 | 2011 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Energy method in the partial Fourier space and application to stability problems in the half space
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The energy method in the Fourier space is useful in deriving the decay estimates for problems in the whole space Rn. In this paper, we study half space problems in and develop the energy method in the partial Fourier space obtained by taking the Fourier transform with respect to the tangential variable x′∈Rn−1. For the variable x1∈R+ in the normal direction, we use L2 space or weighted L2 space. We apply this energy method to the half space problem for damped wave equations with a nonlinear convection term and prove the asymptotic stability of planar stationary waves by showing a sharp convergence rate for t→∞. The result obtained in this paper is a refinement of the previous one in Ueda et al. (2008) [13].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 250, Issue 2, 15 January 2011, Pages 1169-1199
Journal: Journal of Differential Equations - Volume 250, Issue 2, 15 January 2011, Pages 1169-1199