کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4610949 1338594 2012 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Embedding smooth and formal diffeomorphisms through the Jordan–Chevalley decomposition
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Embedding smooth and formal diffeomorphisms through the Jordan–Chevalley decomposition
چکیده انگلیسی

In [Xiang Zhang, The embedding flows of C∞ hyperbolic diffeomorphisms, J. Differential Equations 250 (5) (2011) 2283–2298] Zhang proved that any local smooth hyperbolic diffeomorphism whose eigenvalues are weakly nonresonant is embedded in the flow of a smooth vector field. We present a new and more conceptual proof of such result using the Jordan–Chevalley decomposition in algebraic groups and the properties of the exponential operator.We characterize the hyperbolic smooth (resp. formal) diffeomorphisms that are embedded in a smooth (resp. formal) flow. We introduce a criterion showing that the presence of weak resonances for a diffeomorphism plus two natural conditions imply that it is not embeddable. This solves a conjecture of Zhang. The criterion is optimal, we provide a method to construct embeddable diffeomorphisms with weak resonances if we remove any of the conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 253, Issue 12, 15 December 2012, Pages 3211-3231