کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611039 1338598 2013 59 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence of a martingale solution of the stochastic Navier–Stokes equations in unbounded 2D and 3D domains
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Existence of a martingale solution of the stochastic Navier–Stokes equations in unbounded 2D and 3D domains
چکیده انگلیسی

Stochastic Navier–Stokes equations in 2D and 3D possibly unbounded domains driven by a multiplicative Gaussian noise are considered. The noise term depends on the unknown velocity and its spatial derivatives. The existence of a martingale solution is proved. The construction of the solution is based on the classical Faedo–Galerkin approximation, the compactness method and the Jakubowski version of the Skorokhod Theorem for nonmetric spaces. Moreover, some compactness and tightness criteria in nonmetric spaces are proved. Compactness results are based on a certain generalization of the classical Dubinsky Theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 254, Issue 4, 15 February 2013, Pages 1627-1685