کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4611041 | 1338598 | 2013 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Scalar conservation laws on constant and time-dependent Riemannian manifolds
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we establish well-posedness for scalar conservation laws on closed manifolds M endowed with a constant or a time-dependent Riemannian metric for initial values in L∞(M). In particular we show the existence and uniqueness of entropy solutions as well as the L1 contraction property and a comparison principle for these solutions. Throughout the paper the flux function is allowed to depend on time and to have non-vanishing divergence. Furthermore, we derive estimates of the total variation of the solution for initial values in BV(M), and we give, in the case of a time-independent metric, a simple geometric characterisation of flux functions that give rise to total variation diminishing estimates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 254, Issue 4, 15 February 2013, Pages 1705-1727
Journal: Journal of Differential Equations - Volume 254, Issue 4, 15 February 2013, Pages 1705-1727