کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611041 1338598 2013 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Scalar conservation laws on constant and time-dependent Riemannian manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Scalar conservation laws on constant and time-dependent Riemannian manifolds
چکیده انگلیسی

In this paper we establish well-posedness for scalar conservation laws on closed manifolds M endowed with a constant or a time-dependent Riemannian metric for initial values in L∞(M). In particular we show the existence and uniqueness of entropy solutions as well as the L1 contraction property and a comparison principle for these solutions. Throughout the paper the flux function is allowed to depend on time and to have non-vanishing divergence. Furthermore, we derive estimates of the total variation of the solution for initial values in BV(M), and we give, in the case of a time-independent metric, a simple geometric characterisation of flux functions that give rise to total variation diminishing estimates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 254, Issue 4, 15 February 2013, Pages 1705-1727