کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611102 1338602 2012 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff
چکیده انگلیسی

In this paper, we study the Gevrey regularity of spatially homogeneous Boltzmann equation without angular cutoff. We prove the propagation of Gevrey regularity for C∞ solutions with the Maxwellian decay to the Cauchy problem of spatially homogeneous Boltzmann equation. The idea we use here is based on the framework of Morimoto–Ukaiʼs recent paper (see [Y. Morimoto, S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff, J. Pseudo-Differ. Oper. Appl. 1 (2010) 139–159]), but we extend the range of the index γ satisfying γ+2s∈(−1,1), s∈(0,1/2) and in this case we consider the kinetic factor in the form of Φ(v)=|v|γ instead of 〈v〉γ as Morimoto and Ukai did before.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 253, Issue 4, 15 August 2012, Pages 1172-1190