کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611128 1338604 2012 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analytic and algebraic conditions for bifurcations of homoclinic orbits I: Saddle equilibria
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Analytic and algebraic conditions for bifurcations of homoclinic orbits I: Saddle equilibria
چکیده انگلیسی

We study bifurcations of homoclinic orbits to hyperbolic saddle equilibria in a class of four-dimensional systems which may be Hamiltonian or not. Only one parameter is enough to treat these types of bifurcations in Hamiltonian systems but two parameters are needed in general systems. We apply a version of Melnikovʼs method due to Gruendler to obtain saddle-node and pitchfork types of bifurcation results for homoclinic orbits. Furthermore we prove that if these bifurcations occur, then the variational equations around the homoclinic orbits are integrable in the meaning of differential Galois theory under the assumption that the homoclinic orbits lie on analytic invariant manifolds. We illustrate our theories with an example which arises as stationary states of coupled real Ginzburg–Landau partial differential equations, and demonstrate the theoretical results by numerical ones.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 253, Issue 11, 1 December 2012, Pages 2916-2950