کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611136 1338604 2012 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral asymptotics for the third order operator with periodic coefficients
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Spectral asymptotics for the third order operator with periodic coefficients
چکیده انگلیسی

We consider the self-adjoint third order operator with 1-periodic coefficients on the real line. The spectrum of the operator is absolutely continuous and covers the real line. We determine the high energy asymptotics of the periodic, antiperiodic eigenvalues and of the branch points of the Lyapunov function. Furthermore, in the case of small coefficients we show that either whole spectrum has multiplicity one or the spectrum has multiplicity one except for a small spectral nonempty interval with multiplicity three. In the last case the asymptotics of this small interval is determined.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 253, Issue 11, 1 December 2012, Pages 3113-3146