کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4611151 | 1338606 | 2012 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Average and deviation for slow–fast stochastic partial differential equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Averaging is an important method to extract effective macroscopic dynamics from complex systems with slow modes and fast modes. This article derives an averaged equation for a class of stochastic partial differential equations without any Lipschitz assumption on the slow modes. The rate of convergence in probability is obtained as a byproduct. Importantly, the stochastic deviation between the original equation and the averaged equation is also studied. A martingale approach proves that the deviation is described by a Gaussian process. This gives an approximation to errors of order O(ϵ) instead of order attained in previous averaging.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 253, Issue 5, 1 September 2012, Pages 1265-1286
Journal: Journal of Differential Equations - Volume 253, Issue 5, 1 September 2012, Pages 1265-1286