کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611217 1338610 2013 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global existence and uniqueness for a singular/degenerate Cahn–Hilliard system with viscosity
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Global existence and uniqueness for a singular/degenerate Cahn–Hilliard system with viscosity
چکیده انگلیسی

Existence and uniqueness are investigated for a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by Neumann homogeneous boundary conditions and initial conditions. This system aims to model two-species phase segregation on an atomic lattice (Podio-Guidugli, 2006 [19], ); in the balance equations of microforces and microenergy, the two unknowns are the order parameter ρ and the chemical potential μ. A simpler version of the same system has recently been discussed in Colli et al. (2011) [8]. In this paper, a fairly more general phase-field equation for ρ is coupled with a genuinely nonlinear diffusion equation for μ. The existence of a global-in-time solution is proved with the help of suitable a priori estimates. In the case of a constant atom mobility, a new and rather unusual uniqueness proof is given, based on a suitable combination of variables.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 254, Issue 11, 1 June 2013, Pages 4217-4244