کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611220 1338610 2013 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains
چکیده انگلیسی

We establish the natural Calderón–Zygmund theory for a nonlinear parabolic equation of p-Laplacian type in divergence form,equation(0.1)ut−diva(Du,x,t)=div(|F|p−2F)in ΩT, by essentially proving thatequation(0.2)|F|p∈Lq(ΩT)⇒|Du|p∈Lq(ΩT), for every q∈[1,∞)q∈[1,∞). The equation under consideration is of general type and not necessarily of variation form, the involved nonlinearity a=a(ξ,x,t)a=a(ξ,x,t) is assumed to have a small BMO semi-norm with respect to (x,t)(x,t)-variables and the lateral boundary ∂Ω of the domain is assumed to be δ-Reifenberg flat. As a consequence, we are able to not only relax the known regularity requirements on the nonlinearity for such a regularity theory, but also extend local results to a global one in a nonsmooth domain whose boundary has a fractal property. We also find an optimal regularity estimate in Orlicz–Sobolev spaces for such nonlinear parabolic problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 254, Issue 11, 1 June 2013, Pages 4290–4326
نویسندگان
, , ,