کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611302 1338615 2013 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Traveling waves for a model of the Belousov–Zhabotinsky reaction
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Traveling waves for a model of the Belousov–Zhabotinsky reaction
چکیده انگلیسی

Following J.D. Murray, we consider a system of two differential equations that models traveling fronts in the Noyes-Field theory of the Belousov–Zhabotinsky (BZ) chemical reaction. We are also interested in the situation when the system incorporates a delay h⩾0. As we show, the BZ system has a dual character: it is monostable when its key parameter r∈(0,1] and it is bistable when r>1. For h=0, r≠1, and for each admissible wave speed, we prove the uniqueness of monotone wavefronts. Next, a concept of regular super-solutions is introduced as a main tool for generating new comparison solutions for the BZ system. This allows to improve all previously known upper estimations for the minimal speed of propagation in the BZ system, independently whether it is monostable, bistable, delayed or not. Special attention is given to the critical case r=1 which to some extent resembles to the Zeldovich equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 254, Issue 9, 1 May 2013, Pages 3690-3714