کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611335 1338617 2012 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity
چکیده انگلیسی

We study the global bifurcation and exact multiplicity of positive solutions of{u″(x)+λfε(u)=0,−10λ,ε>0 are two bifurcation parameters, and σ,ρ>0σ,ρ>0, 0<κ⩽σρ are constants. We prove the global bifurcation of bifurcation curves for varying ε>0ε>0. More precisely, there exists ε˜>0 such that, on the (λ,‖u‖∞)(λ,‖u‖∞)-plane, the bifurcation curve is S-shaped for 0<ε<ε˜ and is monotone increasing for ε⩾ε˜. Thus we are able to determine the exact number of positive solutions by the values of ε and λ  . Our results extend those of Hung and Wang (K.-C. Hung, S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications, Trans. Amer. Math. Soc., in press) from κ⩽0κ⩽0 to κ⩽σρ.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 12, 15 June 2012, Pages 6250–6274
نویسندگان
, , ,