کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611361 1338618 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classical Liénard equations of degree n⩾6 can have limit cycles
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Classical Liénard equations of degree n⩾6 can have  limit cycles
چکیده انگلیسی

Based on geometric singular perturbation theory we prove the existence of classical Liénard equations of degree 6 having 4 limit cycles. It implies the existence of classical Liénard equations of degree n⩾6, having at least limit cycles. This contradicts the conjecture from Lins, de Melo and Pugh formulated in 1976, where an upperbound of limit cycles was predicted. This paper improves the counterexample from Dumortier, Panazzolo and Roussarie (2007) by supplying one additional limit cycle from degree 7 on, and by finding a counterexample of degree 6. We also give a precise system of degree 6 for which we provide strong numerical evidence that it has at least 3 limit cycles.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 250, Issue 4, 15 February 2011, Pages 2162-2176