کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4611363 | 1338618 | 2011 | 30 صفحه PDF | دانلود رایگان |

The blow-up solutions of the Cauchy problem for the Davey–Stewartson system, which is a model equation in the theory of shallow water waves, are investigated. Firstly, the existence of the ground state for the system derives the best constant of a Gagliardo–Nirenberg type inequality and the variational character of the ground state. Secondly, the blow-up threshold of the Davey–Stewartson system is developed in R3. Thirdly, the mass concentration is established for all the blow-up solutions of the system in R2. Finally, the existence of the minimal blow-up solutions in R2 is constructed by using the pseudo-conformal invariance. The profile of the minimal blow-up solutions as t→T (blow-up time) is in detail investigated in terms of the ground state.
Journal: Journal of Differential Equations - Volume 250, Issue 4, 15 February 2011, Pages 2197-2226