کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611388 1338620 2012 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Traveling wave front for a two-component lattice dynamical system arising in competition models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Traveling wave front for a two-component lattice dynamical system arising in competition models
چکیده انگلیسی

We study traveling front solutions for a two-component system on a one-dimensional lattice. This system arises in the study of the competition between two species with diffusion (or migration), if we divide the habitat into discrete regions or niches. We consider the case when the nonlinear source terms are of Lotka–Volterra type and of monostable case. We first show that there is a positive constant (the minimal wave speed) such that a traveling front exists if and only if its speed is above this minimal wave speed. Then we show that any wave profile is strictly monotone. Moreover, under some conditions, we show that the wave profile is unique (up to translations) for a given wave speed. Finally, we characterize the minimal wave speed by the parameters in the system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 8, 15 April 2012, Pages 4357-4391