کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4611390 | 1338620 | 2012 | 45 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Conley index along heteroclinic trajectories of reaction–diffusion equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is well known that hyperbolic equilibria of reaction–diffusion equations have the homotopy Conley index of a pointed sphere, the dimension of which is the Morse index of the equilibrium. A similar result concerning the homotopy Conley index along heteroclinic solutions of ordinary differential equations under the assumption that the respective stable and unstable manifolds intersect transversally, is due to McCord. This result has recently been generalized by Dancer to some reaction–diffusion equations by using finite-dimensional approximations. We extend McCordʼs result to reaction–diffusion equations. Additionally, an error in the original proof is corrected.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 8, 15 April 2012, Pages 4410-4454
Journal: Journal of Differential Equations - Volume 252, Issue 8, 15 April 2012, Pages 4410-4454