کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611415 1338621 2012 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping
چکیده انگلیسی

We study the asymptotic stability of a dissipative evolution in a Hilbert space subject to intermittent damping. We observe that, even if the intermittence satisfies a persistent excitation condition, if the Hilbert space is infinite-dimensional then the system needs not being asymptotically stable (not even in the weak sense). Exponential stability is recovered under a generalized observability inequality, allowing for time-domains that are not intervals. Weak asymptotic stability is obtained under a similarly generalized unique continuation principle. Finally, strong asymptotic stability is proved for intermittences that do not necessarily satisfy some persistent excitation condition, evaluating their total contribution to the decay of the trajectories of the damped system. Our results are discussed using the example of the wave equation, Schrödingerʼs equation and, for strong stability, also the special case of finite-dimensional systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 10, 15 May 2012, Pages 5569-5593