کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611460 1338624 2011 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Hughes' model for pedestrian flow: The one-dimensional case
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the Hughes' model for pedestrian flow: The one-dimensional case
چکیده انگلیسی

In this paper we investigate the mathematical theory of Hughes' model for the flow of pedestrians (cf. Hughes (2002) [17], ), consisting of a non-linear conservation law for the density of pedestrians coupled with an eikonal equation for a potential modelling the common sense of the task. For such an approximated system we prove existence and uniqueness of entropy solutions (in one space dimension) in the sense of Kružkov (1970) [22], , in which the boundary conditions are posed following the approach of Bardos et al. (1979) [7]. We use BV estimates on the density ρ and stability estimates on the potential ϕ in order to prove uniqueness. Furthermore, we analyze the evolution of characteristics for the original Hughes' model in one space dimension and study the behavior of simple solutions, in order to reproduce interesting phenomena related to the formation of shocks and rarefaction waves. The characteristic calculus is supported by numerical simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 250, Issue 3, 1 February 2011, Pages 1334-1362