کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611488 1338625 2013 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dependence of solutions and eigenvalues of measure differential equations on measures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Dependence of solutions and eigenvalues of measure differential equations on measures
چکیده انگلیسی

It is well known that solutions of ordinary differential equations are continuously dependent on finite-dimensional parameters in equations. In this paper we study the dependence of solutions and eigenvalues of second-order linear measure differential equations on measures as an infinitely dimensional parameter. We will provide two fundamental results, which are the continuity and continuous Fréchet differentiability in measures when the weak⁎ topology and the norm topology of total variations for measures are considered respectively. In some sense the continuity result obtained in this paper is the strongest one. As an application, we will give a natural, simple explanation to extremal problems of eigenvalues of Sturm–Liouville operators with integrable potentials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 254, Issue 5, 1 March 2013, Pages 2196-2232