کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611507 1338626 2010 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions
چکیده انگلیسی

In this paper, we study a class of semilinear functional evolution equations in which the nonlinearity is demicontinuous and satisfies a semimonotone condition. We prove the existence, uniqueness and exponentially asymptotic stability of the mild solutions. Our approach is to apply a convenient version of Burkholder inequality for convolution integrals and an iteration method based on the existence and measurability results for the functional integral equations in Hilbert spaces. An Itô-type inequality is the main tool to study the uniqueness, p-th moment and almost sure sample path asymptotic stability of the mild solutions. We also give some examples to illustrate the applications of the theorems and meanwhile we compare the results obtained in this paper with some others appeared in the literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 248, Issue 5, 1 March 2010, Pages 1230-1255