کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611522 1338627 2012 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Diffusive mixing of periodic wave trains in reaction–diffusion systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Diffusive mixing of periodic wave trains in reaction–diffusion systems
چکیده انگلیسی

We consider reaction–diffusion systems on the infinite line that exhibit a family of spectrally stable spatially periodic wave trains u0(kx−ωt;k) that are parameterized by the wave number k. We prove stable diffusive mixing of the asymptotic states u0(kx+ϕ±;k) as x→±∞ with different phases ϕ−≠ϕ+ at infinity for solutions that initially converge to these states as x→±∞. The proof is based on Bloch wave analysis, renormalization theory, and a rigorous decomposition of the perturbations of these wave solutions into a phase mode, which shows diffusive behavior, and an exponentially damped remainder. Depending on the dispersion relation, the asymptotic states mix linearly with a Gaussian profile at lowest order or with a nonsymmetric non-Gaussian profile given by Burgers equation, which is the amplitude equation of the diffusive modes in the case of a nontrivial dispersion relation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 5, 1 March 2012, Pages 3541-3574