کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611565 1338629 2012 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bifurcations from nondegenerate families of periodic solutions in Lipschitz systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Bifurcations from nondegenerate families of periodic solutions in Lipschitz systems
چکیده انگلیسی

The paper addresses the problem of bifurcation of periodic solutions from a normally nondegenerate family of periodic solutions of ordinary differential equations under perturbations. The approach to solve this problem can be described as transforming (by a Lyapunov–Schmidt reduction) the initial system into one which is in the standard form of averaging, and subsequently applying the averaging principle. This approach encounters a fundamental problem when the perturbation is only Lipschitz (nonsmooth) as we do not longer have smooth Lyapunov–Schmidt projectors. The situation of Lipschitz perturbations has been addressed in the literature lately and the results obtained conclude the existence of the bifurcated branch of periodic solutions. Motivated by recent challenges in control theory, we are interested in the uniqueness problem. We achieve this in the case when the Lipschitz constant of the perturbation obeys a suitable estimate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 6, 15 March 2012, Pages 3899-3919