کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4611587 | 1338631 | 2012 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bifurcation for a reaction–diffusion system with unilateral and Neumann boundary conditions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider a reaction–diffusion system of activator–inhibitor or substrate-depletion type which is subject to diffusion-driven instability if supplemented by pure Neumann boundary conditions. We show by a degree-theoretic approach that an obstacle (e.g. a unilateral membrane) modeled in terms of inequalities, introduces new bifurcation of spatial patterns in a parameter domain where the trivial solution of the problem without the obstacle is stable. Moreover, this parameter domain is rather different from the known case when also Dirichlet conditions are assumed. In particular, bifurcation arises for fast diffusion of activator and slow diffusion of inhibitor which is the difference from all situations which we know.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 4, 15 February 2012, Pages 2951-2982
Journal: Journal of Differential Equations - Volume 252, Issue 4, 15 February 2012, Pages 2951-2982