کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611675 1338634 2012 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Hess–Appelrot system. II. Perturbation and limit cycles
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The Hess–Appelrot system. II. Perturbation and limit cycles
چکیده انگلیسی

We study the Hess–Appelrot case of the Euler–Poisson system which describes dynamics of a rigid body around a fixed point. It is well known that in this case there is an invariant surface S in the phase space. In our previous paper (Lubowiecki and Żołądek, 2011 [6]) we proved that this surface is a torus and restricted to it dynamics is either hyperbolic or parabolic or elliptic quasi-periodic or elliptic periodic. We proved that the invariant torus is normally hyperbolic when the torus is close to a ‘critical circle’ and the motion is 1:q resonant. In this paper we consider perturbation of the Hess–Appelrot system (within the Euler–Poisson class) near the above situation. We prove existence of an invariant surface close to S and we study limit cycles on the perturbed surface. We estimate the number of such cycles by analysis of some non-standard Melnikov integrals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 2, 15 January 2012, Pages 1701-1722