کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611697 1338635 2011 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain
چکیده انگلیسی

We consider the incompressible Euler equations in a (possibly multiply connected) bounded domain Ω of R2, for flows with bounded vorticity, for which Yudovich (1963) proved in [29], global existence and uniqueness of the solution. We prove that if the boundary ∂Ω of the domain is C∞ (respectively Gevrey of order M⩾1) then the trajectories of the fluid particles are C∞ (respectively Gevrey of order M+2). Our results also cover the case of “slightly unbounded” vorticities for which Yudovich (1995) extended his analysis in [30]. Moreover if in addition the initial vorticity is Hölder continuous on a part of Ω then this Hölder regularity propagates smoothly along the flow lines. Finally we observe that if the vorticity is constant in a neighborhood of the boundary, the smoothness of the boundary is not necessary for these results to hold.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 251, Issue 12, 15 December 2011, Pages 3421-3449