کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4611751 | 1338638 | 2009 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Well-posedness and weak rotation limit for the Ostrovsky equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the Cauchy problem of the Ostrovsky equation. We first prove the time local well-posedness in the anisotropic Sobolev space Hs,a with s>−a/2−3/4 and 0⩽a⩽−1 by the Fourier restriction norm method. This result include the time local well-posedness in Hs with s>−3/4 for both positive and negative dissipation, namely for both βγ>0 and βγ<0. We next consider the weak rotation limit. We prove that the solution of the Ostrovsky equation converges to the solution of the KdV equation when the rotation parameter γ goes to 0 and the initial data of the KdV equation is in L2. To show this result, we prove a bilinear estimate which is uniform with respect to γ.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 247, Issue 12, 15 December 2009, Pages 3163-3180
Journal: Journal of Differential Equations - Volume 247, Issue 12, 15 December 2009, Pages 3163-3180