کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611783 1338639 2012 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On divergence-free drifts
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On divergence-free drifts
چکیده انگلیسی

We investigate the validity and failure of Liouville theorems and Harnack inequalities for parabolic and elliptic operators with low regularity coefficients. We are particularly interested in operators of the form ∂t−Δ+b⋅∇ resp. −Δ+b⋅∇ with a divergence-free drift b. We prove the Liouville theorem and Harnack inequality when b∈L∞(BMO−1) resp. b∈BMO−1 and provide a counterexample demonstrating sharpness of our conditions on the drift. Our results generalize to divergence-form operators with an elliptic symmetric part and a BMO skew-symmetric part. We also prove the existence of a modulus of continuity for solutions to the elliptic problem in two dimensions, depending on the non-scale-invariant norm ‖b‖L1. In three dimensions, on the other hand, bounded solutions with L1 drifts may be discontinuous.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 1, 1 January 2012, Pages 505-540