کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611787 1338639 2012 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Incompressible Euler as a limit of complex fluid models with Navier boundary conditions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Incompressible Euler as a limit of complex fluid models with Navier boundary conditions
چکیده انگلیسی

In this article we study the limit α→0 of solutions of the α-Euler equations and the limit α,ν→0 of solutions of the second grade fluid equations in a bounded domain, both in two and in three space dimensions. We prove that solutions of the complex fluid models converge to solutions of the incompressible Euler equations in a bounded domain with Navier boundary conditions, under the hypothesis that there exists a uniform time of existence for the approximations, independent of α and ν. This additional hypothesis is not necessary in 2D, where global existence is known, and for axisymmetric flows without swirl, for which we prove global existence. Our conclusion is strong convergence in L2 to a solution of the incompressible Euler equations, assuming smooth initial data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 1, 1 January 2012, Pages 624-640