کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611822 1338641 2011 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space
چکیده انگلیسی

In this paper, we study a multidimensional bipolar hydrodynamic model for semiconductors or plasmas. This system takes the form of the bipolar Euler–Poisson model with electric field and frictional damping added to the momentum equations. In the framework of the Besov space theory, we establish the global existence of smooth solutions for Cauchy problems when the initial data are sufficiently close to the constant equilibrium. Next, based on the special structure of the nonlinear system, we also show the uniform estimate of solutions with respect to the relaxation time by the high- and low-frequency decomposition methods. Finally we discuss the relaxation-time limit by compact arguments. That is, it is shown that the scaled classical solution strongly converges towards that of the corresponding bipolar drift-diffusion model, as the relaxation time tends to zero.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 251, Issue 11, 1 December 2011, Pages 3143-3162