کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611825 1338641 2011 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bifurcation of stable equilibria and nonlinear flux boundary condition with indefinite weight
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Bifurcation of stable equilibria and nonlinear flux boundary condition with indefinite weight
چکیده انگلیسی

We study bifurcation and stability of positive equilibria of a parabolic problem under a nonlinear Neumann boundary condition having a parameter and an indefinite weight. The main motivation is the selection migration problem involving two alleles and no gene flux acrossing the boundary, introduced by Fisher and Fleming, and Henryʼs approach to the problem.Local and global structures of the set of equilibria are given. While the stability of constant equilibria is analyzed, the exponential stability of the unique bifurcating nonconstant equilibrium solution is established. Diagrams exhibiting the bifurcation and stability structures are also furnished. Moreover the asymptotic behavior of such solutions on the boundary of the domain, as the positive parameter goes to infinity, is also provided.The results are obtained via classical tools like the Implicit Function Theorem, bifurcation from a simple eigenvalue theorem and the exchange of stability principle, in a combination with variational and dynamical arguments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 251, Issue 11, 1 December 2011, Pages 3228-3247