کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611846 1338643 2012 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Normal forms for semilinear superquadratic quantum oscillators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Normal forms for semilinear superquadratic quantum oscillators
چکیده انگلیسی

On the real line, we consider nonlinear Hamiltonian Schrödinger equations with the superquadratic oscillator −d2/dx2+x2p+η(x)+M, where p is an integer ⩾2, η is a polynomial of degree <2p such that inf(x2p+η(x))⩾0, and M is a multiplier (i.e. simultaneously diagonalized with −d2/dx2+x2p+η(x)). A previous article (Grébert et al. (2009) [11], ) contains the case p=1 in Rd. Here we deal with d=1 but we authorize any superquadratic potential. Under generic conditions on M related to the nonresonance of the linear part, such a Hamiltonian equation admits, in a neighborhood of the origin, a Birkhoff normal form at any order. Consequently we deduce long time existence for solutions of the above equation with small Cauchy data in the high Sobolev spaces. As spectral analysis (spectrum and eigenfunctions) of the linear part is not explicit, we use Helffer–Robert and Yajima–Zhangʼs results (Helffer and Robert (1982) [12], , Yajima and Zhang (2001) [21]) to understand asymptotic behavior of both spectrum and eigenfunctions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 3, 1 February 2012, Pages 2025-2052