کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611866 1338643 2012 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Liouville-type theorems and bounds of solutions of Hardy–Hénon equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Liouville-type theorems and bounds of solutions of Hardy–Hénon equations
چکیده انگلیسی

We consider the Hardy–Hénon equation −Δu=a|x|up with p>1 and a∈R and we are concerned in particular with the Liouville property, i.e. the nonexistence of positive solutions in the whole space RN. It has been conjectured that this property is true if (and only if) p0 seems more difficult, due to pS(a)>(N+2)/(N−2).In this paper, we prove the conjecture for a>0 in dimension N=3, in the case of bounded solutions. Next, for the conjecture in the case a<0, and for related estimates near isolated singularities and at infinity, we give new proofs – based in particular on doubling-rescaling arguments – and we provide some extensions of these estimates. These proofs are significantly simpler than the previously known ones. Finally, we clarify some of the previous results on a priori estimates for the related Dirichlet problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 252, Issue 3, 1 February 2012, Pages 2544-2562