کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4611963 1338648 2011 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability of planar shock fronts for multidimensional systems of relaxation equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Stability of planar shock fronts for multidimensional systems of relaxation equations
چکیده انگلیسی

We investigate stability of multidimensional planar shock profiles of a general hyperbolic relaxation system whose equilibrium model is a system, under the necessary assumption of spectral stability and a standard set of structural conditions that are known to hold for many physical systems. Our main result, generalizing the work of Kwon and Zumbrun in the scalar relaxation case, is to establish the bounds on the Greenʼs function for the linearized equation and obtain nonlinear L2 asymptotic behavior/sharp decay rate of perturbed weak shock profiles. To establish Greenʼs function bounds, we use the semigroup approach in the low-frequency regime, and use the energy method for the high-frequency bounds, separately. For the system equilibrium case, the analysis of the linearized equation is complicated due to glancing phenomena. We treat this difficulty similarly as in the inviscid and viscous systems, under the constant multiplicity condition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 251, Issue 8, 15 October 2011, Pages 2226-2261