کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4611991 | 1338650 | 2008 | 47 صفحه PDF | دانلود رایگان |

We study the limiting behavior of a nonlinear Schrödinger equation describing a 3-dimensional gas that is strongly confined along the vertical, z direction. The confinement induces fast oscillations in time, that need to be averaged out. Since the Hamiltonian in the z direction is merely assumed confining, without any further specification, the associated spectrum is discrete but arbitrary, and the fast oscillations induced by the nonlinear equation entail countably many frequencies that are arbitrarily distributed. For that reason, averaging cannot rely on small denominator estimates or like.To overcome these difficulties, we prove that the fast oscillations are almost-periodic in time, with values in a Sobolev-like space that we completely identify. We then exploit the existence of long-time averages for almost-periodic functions to perform the necessary averaging procedure in our nonlinear problem.
Journal: Journal of Differential Equations - Volume 245, Issue 1, 1 July 2008, Pages 154-200