کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612009 1338652 2011 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence of translating solutions to the flow by powers of mean curvature on unbounded domains
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Existence of translating solutions to the flow by powers of mean curvature on unbounded domains
چکیده انگلیسی

In this paper, we prove the existence of classical solutions to the Dirichlet problem of a class of quasi-linear elliptic equations on an unbounded cone and a U-type domain in Rn (n⩾2). This problem comes from the study of mean curvature flow or its generalization, the flow by powers of mean curvature. Our approach is a modified version of the classical Perron method, where the solutions to the minimal surface equation are used as sub-solutions and a family auxiliary functions are constructed as super-solutions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 250, Issue 10, 15 May 2011, Pages 3967-3987